sábado, 15 de dezembro de 2018


o tempo da cosmologia no sistema decadimensional e categorial Graceli.


o tempo no sistema decadimensional e categorial Graceli não retorna para o passado e nem avança para o futuro, ele não existe como coisa em si, ou seja, ele não existe, sendo que o que existe são os fenômenos e movimentos, estes sim existem em si, no presente e avança para frente, mas nunca para o passado.



Rμν – (1/2) gμν R = Gμν = - k Tμν,
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

 Gμν + Λ gμν = - k Tμν
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



HU ΨU(, t) = i (h/2π) ∂ ΨU (, t)/ ∂ t
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Albert Einstein (1879-1955; PNF, 1921) postulou que a presença da energia-matéria no espaço induz neste uma geometria não-euclidiana, de modo que a força gravitacional entre os corpos no Universo é dada pela curvatura do espaço. Esse postulado é traduzido pela seguinte equação:
Rμν – (1/2) gμν R = Gμν = - k Tμν,
sendo R = gμν Rμν, onde Rμν é o tensor contraído de Riemann-Christoffel ou tensor de Ricci, Gμν é o tensor de Einstein, gμν (gμν) é o tensor métrico, Tμν é o tensor energia-matéria, e k é a constante de gravitação de Einstein. Ao analisar sua equação, Einstein postulou que a curvatura do espaço deveria ser independente do tempo, ou seja, que o Universo deveria ser estático.
Contudo, ao procurar, em 1917, as soluções estáticas de sua equação observou que as mesmas eram impossíveis. Então, para contornar essa dificuldade, formulou a hipótese de que as forças entre as galáxias são independentes de suas massas e variam na razão direta da distância entre elas, isto é, que havia uma repulsão cósmica , além, é claro, da atração gravitacional newtoniana. Matematicamente, essa hipótese significava acrescentar ao primeiro termo de sua equação – o famoso termo cosmológico ou termo de repulsão cósmica : Λ gμν, onde Λ é a hoje famosa constante cosmológica, isto é: Gμν + Λ gμν = - k Tμν. Desse modo, Einstein demonstrou que o Universo era finito e de curvatura positiva, indicando que sua geometria não-euclidiana era esférica.
Assim, se um astronauta viajasse através de uma geodésica do mesmo, deveria voltar ao ponto de partida, porém ele nunca atingiria o seu passado.
Em virtude disso, esse modelo cosmológico ficou conhecido como Universo Cilíndrico de Einstein.
                   Ainda 1917, o astrônomo holandês Willem de Sitter (1872-1934) encontrou uma outra solução estática da equação de Einstein. Com efeito, ao supor que o Universo era vazio, demonstrou que o espaço-tempo era curvo, razão pela qual seu modelo ficou conhecido como Universo Esférico de de Sitter. Por sua vez, em 1922, o matemático russo Aleksandr Aleksandrovitch Friedman (1888-1925) formulou a hipótese de que a matéria do Universo se distribuía uniformemente, e, desse modo, encontrou duas soluções não-estáticaspara a equação de Einstein. Numa delas, o Universo se expandiria com o tempo e na outra, se contrairia. Entre 1924 e 1926, o astrônomo norte-americano Edwin Powell Hubble (1889-1953) realizou, no Observatório de Monte Wilson, observações que o levaram a afirmar que o Universo estava em expansão. Em vista disso, em 1927, o astrônomo belga, o Abade Georges-Henri Edouard Lemaître (1894-1966) formulou um modelo cosmológico segundo o qual o Universo teria começado a partir da explosão de um átomo primordial (ovo cósmico) que conteria toda a matéria do Universo. Em 1949, o matemático austro-húngaro Kurt Gödel (1906-1978) encontrou uma solução para a equação de Einstein na qual o Universo é infinito, sem tempo cosmológico, estático (sem expansão) e giratório. Assim, nesse Universo de Gödel, um foguete pode viajar para qualquer região do passado, presente ou futuro e voltar atrás [Kurt Gödel, A Remark about the Relationship between Relativity Theory and Idealistic PhilosophyIN: Paul Arthur Schilpp (Editor), Albert Einstein: Philsopher-Scientist (Open Court, 1970)]. Por sua vez, em 1983, os físicos ingleses James Burnett Hartle e Stephen William Hawking (n.1942) propuseram uma função de onda schrödingeriana (ΨU) para descrever o Universo. Para calcular Ψdeveremos resolver a equação de Schrödinger: HU ΨU(, t) = i (h/2π) ∂ ΨU (, t)/ ∂ t. Portanto, conhecida a hamiltoniana do Universo (HU), a técnica para resolver essa equação é a de usar as integrais de caminho de Feynman (ICF). Contudo, além da dificuldade (que ainda permanece) de se definir a HU, há dificuldades técnicas, qual seja, o aparecimento de divergências (valores infinitos) quando se resolve a ICF com o tempo real. Para contornar essa dificuldade, Hawking [Stephen William Hawking, Uma Breve História do Tempo (Rocco, 1988)] sugeriu que as ICF fossem realizadas em um tempo imaginário. Essa proposta de Hawking ficou conhecida como Gravidade Quântica
                   Portanto, concluindo este verbete, vimos o aspecto do tempo cosmológicoapresenta três interpretações: 1) o tempo começou com a explosão [denominada, em 1950, de big bang pelo astrofísico inglês Sir Fred Hoyle (1915-2001)] do átomo primordial, há cerca de 13 bilhões de anos (vide verbete nesta série); 2) o tempo não teve começo e nem terá fim, portanto, ele é infinito [é interessante destacar que essa interpretação também foi encontrada pelo cosmólogo brasileiro Mário Novello (n.1942), com o seu modelo de Universo Eterno e Dinâmico, proposto em 1984, em parceria com Hans Heitzmann]; 3) o tempo não é real e sim, imaginário.



todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].




Fx = m d2x/dt2
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


ΔE Δt ≈  h,
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

 H Ψ = E Ψ
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



S = k n Ω, [o tempo na entropia no sistema decadimensional e categorial Graceli]
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



O Tempo na Mecânica Quântica.

, o físico alemão Max Karl Ernest Planck (1858-1947; PNF, 1918) demonstrou que a energia dos osciladores moleculares (de frequência ν), não variava continuamente e, sim, discretamente, como múltiplos da quantidade hν (onde h foi posteriormente chamado de constante de Planck), denominada por ele de quantum de energia. Mais tarde, em 1913, o físico dinamarquês Niels Henrik David Bohr (1885-1962; PNF, 1922) formulou o modelo atômico quântico, segundo o qual os elétrons giravam em determinadas órbitas circulares em torno do núcleo atômico, com o módulo do momento angular (L) quantizado (L = nh/2π), bem como as suas energias (E) também quantizadas [E = - (13,6/n2) eV (elétron-Volt), com n = 1, 2, ... , e o sinal menos (-) indicando que as órbitas são presas (ligadas) ao núcleo]. Esse modelo, no entanto, foi substituído pela Mecânica Quântica, desenvolvida entre 1925 e 1927, cuja formulação motivou uma discussão entre Bohr e o físico alemão Werner Karl Hiesenberg (1901-1976; PNF, 1932), qual seja, a de se explicar (por intermédio de uma experiência de pensamento) as órbitas eletrônicas bohrianas numa câmara de névoa ou câmara de Wilson (sobre esse dispositivo, ver verbete nesta série), usando o formalismo matemático dessa Mecânica. Para explicá-las, Heisenberg foi levado, em 1927, à apresentação do famoso Princípio da Incerteza: - É impossível obter exatamente os valores simultâneos de duas variáveis, a não ser dentro de um limite mínimo de exatidão[Werner Karl Heisenberg, The Physical Principles of the Quantum Theory, (Dover Publications, Inc., em 1949); Physics and Beyond: Encounters and Conversations, (Harper and Row, Publishers, em 1971)]. Para o caso das variáveis momento linear (p) e posição (x), esse princípio é traduzido por uma expressão envolvendo os erros (Δ) em suas medidas, ou seja: Δpx Δx ≈  h, conhecida como Relação (Princípio) de Incerteza de Heisenberg [RI(P)H], segundo sua proposição inicial. 
                   Essa RIH conduziu a um resultado revolucionário em Física. Vejamos qual. Na Mecânica Newtoniana, o movimento de uma partícula é regido pela Segunda Lei de Newton, que é dada por Fx = m d2x/dt2 (movimento unidimensional). Pois bem, para resolvê-la, isto é, calcular a trajetória [x(t)] seguida pela partícula, é necessário conhecer a velocidade v (e, consequentemente, o p, uma vez que p = mv) e x da mesma em um determinado instante (t). Contudo, segundo a RIH, posição e velocidade (ou momento) não podem ser conhecidas simultaneamente, pois sabendo a posição de uma partícula com precisão absoluta (Δx = 0), perdemos completamente a informação sobre a velocidade da mesma, visto que, segundo a RIH, temos: Δ(m vx ) Δx ≈  h, então, para Δx = 0 teremos Δv→ ∞. Deste modo, do ponto de vista da Mecânica Quântica, dizemos que a trajetória de uma partícula é indeterminada. É oportuno destacar que, em 1952, o físico norte-americano David Joseph Bohm (1917-1992) desenvolveu uma formulação determinista causal para a Mecânica Quântica. Para detalhes dessa Mecânica, ver verbetes nesta série. 
               Agora, aplicando a RIH ao par de variáveis energia (E) e tempo (t), resultará na relação de incerteza ΔE Δt ≈  h, que permite mostrar ser estacionário o estado de um sistema com E bem definida, pois, neste caso, tem-se: ΔE = 0 e, portanto, teremos Δt → ∞, limite esse que caracteriza as órbitas estacionárias do modelo de Bohr de 1913 (vide verbete nesta série). Observe-se que, como ainda não se conseguiu atribuir um operador para o tempo (t), essa relação é denominada de relação de dispersão (RD).  Essa RD caracteriza o que denominamos o aspecto do tempo quântico, já que ela nos permitirá saber se o tempo édiscreto ou contínuo. Vejamos de que maneira. A variável energia (E) envolvida na expressão acima é uma grandeza física que varia discretamente, conforme postulou Planck, em 1900, segundo vimos acima. Mais tarde, em 1926, quando o físico austríaco Erwin Schrödinger (1887-1961; PNF, 1933) propôs sua famosa equação – H Ψ = E Ψ - para explicar as órbitas estacionárias do elétron no átomo de hidrogênio (H), ele demonstrou o aspecto discreto da energia bohriana. Destaque-se que, como a equação de Schrödinger (ES) é não-relativista e não considera o spin do elétron, o físico inglês Paul Adrien Maurice Dirac (1902-1984; PNF, 1933), em 1928, deduziu uma equação para estudar a dinâmica do elétron – a célebre equação de Dirac (ED) – que é relativista e spinorial; a partir daí surgiu a Mecânica Quântica Relativística, bem como a Eletrodinâmica Quântica (vide verbete nesta série).     
                   O desenvolvimento posterior da Mecânica Quântica mostrou que seu formalismo matemático permite demonstrar a RIH para um dado par de variáveis físicas, desde que se possa atribuir a cada uma delas um operador, e que não comutem entre si, isto é, dados dois operadores A e B, eles anticomutam quando: AB ≠ BA. Contudo, enquanto se pode atribuir à variável E o operador hamiltoniano (H = T + V, sendo T a energia cinética e V o potencial), até o presente momento não se encontrou um operador para t. Por essa razão, sob o aspecto quântico, o tempo é considerado, portanto, uma grandeza que varia continuamente. Registre-se que a ideia de ser o tempo considerado como uma variável dinâmica discreta foi discutida pelo físico sino-norte-americano Tsung-Dao Lee (n.1926; PNF, 1957), em 1983 (Physics Letters B122, p. 217), tanto na Mecânica Clássica quanto na Mecânica Quântica Não-Relativística e Relativística.
                   Ainda na Mecânica Quântica [Relativística (ED) e Não Relativística (ES)], na Mecânica Estatística Quântica (MEQ) e na Teoria Quântica de Campos (TCQ), é interessante destacar alguns aspectos do uso do tempo. Quando fazia o doutoramento em Física (concluído em 1942) na Universidade de Princeton, nos Estados Unidos, o físico norte-americano Richard Philips Feynman (1918-1988; PNF, 1965) começou a questionar o determinismo das equações diferenciais ordinárias da Mecânica: Clássica (EN-E), Quântica Não-Relativística (ES) e Relativística (ED). Esse determinismo, conforme vimos anteriormente, significava dizer que conhecida a posição de uma partícula (p.e.: o elétron) em um dado instante, saberemos o que ela (ele) fez ou fará posteriormente. Pois bem, a partir desse questionamento, Feynman partiu do princípio de que a partícula poderia fazer o que quisesse, podendo, inclusive, voltar no tempo. É oportuno ressaltar que essa possibilidade da inversão temporal, já havia sido usada, em 1934 (Annalen der Physik 21, p. 367), pelo físico suíço Ernst Carl Gerlach Stückelberg (1905-1984) ao explicar que o pósitron (vide verbete nesta série) poderia ser tratado como um elétron viajando do futuro para o passado. Assim, continuava Feynman, partindo-se do estado de um elétron em certo instante (t0), saberemos calcular um outro estado do mesmo em um outro tempo (t), se somarmos as contribuições de todos os infinitos possíveis históricos do elétron que o levam de um estado a um outro possível. Para Feynman, o histórico de um elétron era qualquer caminho (trajetória) possível no espaço e no tempo, podendo inclusive voltar no tempo, conforme havia afirmado antes. Esses infinitos históricos (por causa da RIH, que não permite que sejam definidas trajetóriaspara partículas) eram representados por figuras, mais tarde conhecidas como diagramas de Feynman, que são calculados por intermédio de uma integral (integral de caminho – path integral), e o resultado recebe o nome de propagador de Feynman, segundo sua formulação apresentada em 1948 (Review of Modern Physics 20, p. 367). Esses propagadores, assim como a inversão temporal, foram utilizados por Feynman, para desenvolver a Teoria dos Pósitrons, em 1949 (Physical Review 76, p. 749; 769). [Richard Philips Feynman, Quantum Electrodynamics (W. A. Benjamin, Inc., 1962)].
                   Na MEQ, outro aspecto quântico do tempo foi apresentado pelo físico suíço-norte-americano Felix Bloch (1905-1983; PNF, 1952), em 1932 (Zeitschrift für Physik 74, p. 295), ao estudar a dinâmica do ferromagnetismo e considerar que havia uma correlação entre temperatura (T) e tempo imaginário definido pela expressão dada por: t = - i (h/2 k T), onde k é a constante de Boltzmann e i = . Com essa extensão analítica do tempo, ele transformou sua equação – equação de Bloch - numa ES. [José Maria Filardo Bassalo, Mauro Sérgio Dorsa Cattani e Antonio Boulhosa Nassar, Aspectos Contemporâneos da Física, (EdUFPA, 1999)]. Na TQC, em 1981 (Nuclear Physics B188, p. 9; 513), o físico-matemático norte-americano Edward Witten (n.1951) introduziu a supersimetria na TQC em (0 + 1) dimensões, que ficou conhecida como Mecânica Quântica Supersimétrica (MQS), na qual o tempo é a coordenada e a posição é o próprio campo.  [Elso Drigo Filho, Supersimetria Aplicada à Mecânica Quântica (EdUNESP, 2009)].         
                   Para concluir este verbete sobre o tempo na Mecânica Quântica, analisemos o seu comportamento no famoso Paradoxo EPR. Segundo registramos em verbetes desta série, quando Schrödinger propôs sua famosa ES, em 1926, segundo registramos acima (H Ψ = E Ψ), surgiu uma questão intrigante: qual o significado físico da função de onda (Ψ)?. Uma das respostas que tem mais adeptos até hoje foi apresentada pelo físico alemão Max Born (1882-1970; PNF, 1954), ainda em 1926, que a considerou como uma amplitude de probabilidade. A essa interpretação sobrepôs-se uma outra relevante questão. Será sempre possível observar uma grandeza física? A resposta a essa pergunta foi dada por Heisenberg, em 1927, por intermédio da RIH, comentada anteriormente. A partir dela, desenvolveu-se a Mecânica Quântica Probabilística (Indeterminista) (MQI) – conhecida como Interpretação de Copenhague (IC) – por ser adotada por Bohr que liderava um grupo de pesquisa em Copenhague. Essa interpretação foi questionada por Einstein, no célebre Congresso de Solvay, realizado na cidade de Bruxelas, na Bélgica, em 1927. [Sobre essa discussão entre Einstein e Bohr, ver: Paul Arthur Schilpp (Editor), Albert Einstein: Philosopher-Scientist, (Open Court, 1970)]. Para dar mais consistência ao argumento que Einstein apresentou naquele Congresso (e, posteriormente, no de 1930, ainda em Bruxelas) contra a IC, ele e os físicos, o russo Boris Podolsky (1896-1966) e o norte-americano Nathan Rose (1909-1955) apresentaram, em 1935 (Physical Review 47, p. 777), o hoje conhecido Paradoxo de Einstein-Podolsky-Rosen ou Paradoxo EPR: - Se, sem perturbar um sistema físico, for possível predizer, com certeza (isto é, com a probabilidade igual a umo valor de uma quantidade física, então existe um elemento da realidade física correspondente a essa quantidade física.  
               Para chegar a essa afirmação, esses três físicos examinaram a situação de dois sistemas, I e II, que interagem entre t=0 e t=T, e depois desse intervalo de tempo deixam de interagir. Supuseram, também, que os estados dos dois sistemas eram conhecidos antes de t=0. Desse modo, com auxílio da MQI, afirmaram que pode ser calculada a Ψ do sistema I + II, para qualquer t > T. Os resultados dos cálculos quanto-mecânicos que realizaram com a Ψ para a situação que haviam considerado [também conhecida como experiência de pensamento (gedankenexperimente)], podem ser descritos de outra maneira. Vejamos qual. Sejam duas partículas (1, 2) (p.e.: elétrons), com os respectivos, momento linear (,) e posição (,), que estão em um estado com momento linear  e posição relativa . Então, elas interagem entre si durante algum tempo, e em seguida deixam de fazê-lo. Assim, conhecidos os valores de  e  (que podem ser nulos, bastando para isso considerar que elas estão paradas e juntas), então, medidas simultâneas de  e  nos darão, respectivamente, os valores de , sem perturbar a partícula 2 e de , sem perturbara partícula 1. Desse modo, afirmaram os três físicos, teremos obtido simultaneamente os valores de  e , da partícula 2, que são elementos da realidade física. Contudo, a MQI proíbe que se conheçam, simultaneamente, momento linear e posição de uma partícula. Daí a razão desse artigo ser conhecido como o Paradoxo EPR (P-EPR), nome esse cunhado pelo físico norte-americano David Joseph Bohm (1917-1992) em seu livro intitulado Quantum Theory (Prentice-Hall, 1951). Portanto, segundo o P-EPR, a medição da posição (ou momento linear) de uma partícula poderia ser feita sem perturbar a outra, porque elas estavam separadas no espaço e não interagindo por intermédio de sinais locais (com a velocidade da luz que, no entanto, é finita) no momento das medições e, portanto, estariam sob uma interação (ação) a distância (p.e.: como na gravitação newtoniana). Portanto, tal interação ocorria em um tempo nulo, uma vez que essas medidas apresentavam resultados simultâneos. 
   O P-EPR recebeu a imediata contestação de Bohr, primeiro por intermédio de uma carta que escreveu à Revista Nature dois meses depois da publicação do artigo EPR, na qual dizia que não concordava com as conclusões desse artigo, prometendo escrever um outro mais detalhado, o que realmente ocorreu, ainda em 1935 (Nature 136, p. 65; Physical Review 48, p. 696). Com efeito, Bohr usou a MQI e deu uma explicação para o P-EPR dizendo que a medição de um de dois objetos quânticos (p.e.: elétrons) correlacionados afeta o parceiro correlacionado. Assim, quando um objeto de um par correlacionado sofre uma medida da função de onda Ψ [na linguagem da MQI, essa medida chama-se de colapso da função de onda (vide verbete nesta série)] em um estado de momento linear (p.e., ), a função de onda do outro também entra em colapso (no estado de momento linear),  -  e nada se pode dizer sobre a posição () do outro objeto correlacionado. O mesmo ocorre se for medida a posição (ou ). Portanto, segundo Bohr, o colapso da função de onda do mesmo modo que a correlação (entanglement) são objetos que apresentam uma Inseparabilidade Quântica